organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(5-Bromo-2-hydroxyphenyl)(phenyl)methanone

Chang-Zheng Zheng,^a Chang-You Ji,^a* Xiu-Li Chang^b and Li-Qin Zhang^a

^aCollege of Environmental and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China, and ^bDepartment of Materials Science and Chemical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China Correspondence e-mail: jichangyou789456@126.com

Received 22 November 2008; accepted 25 November 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.029; *wR* factor = 0.073; data-to-parameter ratio = 13.2.

In the title compound, $C_{13}H_9BrO_2$, the dihedral angle between the aromatic ring planes is 53.6 (1)°. The crystal structure is stabilized by intramolecular $O-H\cdots O$ and intermolecular $C-H\cdots O$ hydrogen bonding and $C-H\cdots \pi$ interactions.

Related literature

For the ability of aroylhydrazones to coordinate to metal ions and their biological activity, see: Singh *et al.* (1982); Salem (1998); Carcelli *et al.* (1995).

Experimental

Crystal data C₁₃H₉BrO₂

 $M_r = 277.11$

Monoclinic, $P2_1/c$	Z = 4
a = 15.9510 (18) Å	Mo $K\alpha$ radiation
b = 5.8956 (6) Å	$\mu = 3.73 \text{ mm}^{-1}$
c = 12.1260 (14) Å	T = 298 K
$\beta = 106.166 (2)^{\circ}$	$0.15 \times 0.10 \times 0.06 \text{ mm}$
V = 1095.2 (2) Å ³	

Data collection

Siemens SMART CCD area-	5479 measured reflections
detector diffractometer	1933 independent reflections
Absorption correction: multi-scan	1578 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.027$
$T_{\min} = 0.604, \ T_{\max} = 0.807$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.029 & 146 \text{ parameters} \\ wR(F^2) &= 0.072 & H\text{-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{max} &= 0.33 \text{ e } \text{\AA}^{-3} \\ 1933 \text{ reflections} & \Delta\rho_{min} &= -0.52 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$01 - H1 \cdots O2$ $C3 - H3 \cdots O1^{i}$ $C12 - H12 \cdots Cg1^{ii}$	0.82 0.93 0.93	1.85 2.60 2.93	2.569 (3) 3.488 (3) 3.596 (3)	146 160 130

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$. Cg1 is the centroid of the C8–C13 ring.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

This project was supported by the Postgraduate Foundation of Xi'an Polytechnic University (No. Y05–2–09)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2684).

References

Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.

Salem, A. A. (1998). Microchem. J. 60, 51-66.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77-84.

supplementary materials

Acta Cryst. (2008). E64, o2486 [doi:10.1107/S160053680803969X]

(5-Bromo-2-hydroxyphenyl)(phenyl)methanone

C.-Z. Zheng, C.-Y. Ji, X.-L. Chang and L.-Q. Zhang

Comment

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh *et al.*, 1982; Salem, 1998) and their biological activity (Singh *et al.*, 1982; Carcelli *et al.*, 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound, (I), was synthesized and its crystal structure is reported here.

The title molecule displays a *trans* conformation with respect to the C7=O2 double bond (Fig. 1). The crystal structure is stabilized by intramolecular O—H···O and intermolecular C—H···O hydrogen bonding and C-H··· π interactions (Table 1. and Fig. 2).

Experimental

The benzoyl chloride (0.01 mol, 1.4057 g) and the 4-bromophenol, heated up in the oil bath, the reaction mixture was refluxed for 6 h with stirring. Then anhydrous aluminium trichloride (3 mol, 1:3) was added, the backflow agitation responds for 4 h (yield 80%). The compound (2.0 mmol, 0.67 g) was dissolved in dimethylformamide (30 ml) and kept at room temperature for 30 d to obtain brown single crystals suitable for X-ray diffraction.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The crystal packing of (I), viewed down the b axis. Dashed lines show intra-and intermolecular hydrogen bonds.

(5-Bromo-2-hydroxyphenyl)(phenyl)methanone

Crystal data

C₁₃H₉BrO₂ $M_r = 277.11$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 15.9510 (18) Å b = 5.8956 (6) Å *c* = 12.1260 (14) Å $\beta = 106.166 \ (2)^{\circ}$ V = 1095.2 (2) Å³ Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer	1933 independent reflections
Radiation source: fine-focus sealed tube	1578 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 273(2) K	$\theta_{\text{max}} = 25.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 19$
$T_{\min} = 0.604, \ T_{\max} = 0.807$	$k = -4 \rightarrow 7$
5479 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.073$	$w = 1/[\sigma^2(F_o^2) + (0.0296P)^2 + 0.7566P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
1933 reflections	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
146 parameters	$\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

 $F_{000} = 552$ $D_{\rm x} = 1.681 {\rm Mg m}^{-3}$ Mo Kα radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2043 reflections $\theta = 2.7 - 23.4^{\circ}$ $\mu = 3.73 \text{ mm}^{-1}$ T = 298 KBlock, yellow $0.15 \times 0.10 \times 0.06 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.42247 (2)	-0.27591 (5)	0.49702 (3)	0.05526 (14)
01	0.28452 (15)	0.5186 (4)	0.70204 (17)	0.0548 (6)
H1	0.2528	0.5974	0.6517	0.082*
02	0.18991 (14)	0.6145 (4)	0.49878 (17)	0.0537 (6)
C1	0.31010 (19)	0.3343 (5)	0.6540 (2)	0.0404 (7)
C2	0.27504 (17)	0.2828 (4)	0.5366 (2)	0.0330 (6)
C3	0.30905 (17)	0.0971 (4)	0.4914 (2)	0.0336 (6)
H3	0.2877	0.0616	0.4139	0.040*
C4	0.37381 (18)	-0.0324 (5)	0.5610(2)	0.0384 (6)
C5	0.40544 (19)	0.0138 (6)	0.6778 (3)	0.0493 (8)
Н5	0.4478	-0.0789	0.7248	0.059*
C6	0.37369 (19)	0.1969 (6)	0.7229 (2)	0.0485 (8)
Н6	0.3952	0.2292	0.8008	0.058*
C7	0.20810 (18)	0.4294 (5)	0.4636 (2)	0.0362 (6)
C8	0.16079 (17)	0.3613 (5)	0.3442 (2)	0.0340 (6)
C9	0.15422 (19)	0.5167 (5)	0.2563 (2)	0.0415 (7)
Н9	0.1816	0.6569	0.2718	0.050*
C10	0.1068 (2)	0.4626 (6)	0.1452 (3)	0.0503 (8)
H10	0.1042	0.5646	0.0858	0.060*
C11	0.0636 (2)	0.2594 (6)	0.1225 (3)	0.0510 (8)
H11	0.0310	0.2250	0.0481	0.061*
C12	0.06851 (19)	0.1062 (5)	0.2098 (3)	0.0466 (7)
H12	0.0381	-0.0300	0.1942	0.056*
C13	0.11812 (18)	0.1530 (5)	0.3204 (2)	0.0385 (6)
H13	0.1230	0.0464	0.3784	0.046*
Atomic displacemen	t parameters $(Å^2)$			

 U^{22} U^{13} U^{11} U^{33} U^{12} U^{23} Br1 0.0478 (2) 0.0490 (2) 0.0675 (2) 0.01286 (15) 0.01368 (16) -0.00212 (16) 01 0.0628 (15) 0.0608 (15) 0.0403 (11) 0.0066 (11) 0.0136 (11) -0.0127(10)O2 0.0641 (15) 0.0420 (13) 0.0519 (13) 0.0133 (10) 0.0108 (11) -0.0070(10)

supplementary materials

C1	0.0385 (16)	0.0481 (17)	0.0381 (15)	-0.0056 (13)	0.0162 (13)	-0.0043 (13)
C2	0.0326 (14)	0.0341 (15)	0.0329 (13)	-0.0019 (11)	0.0102 (11)	0.0019 (11)
C3	0.0336 (15)	0.0363 (15)	0.0309 (14)	-0.0059 (12)	0.0091 (12)	-0.0005 (12)
C4	0.0330 (15)	0.0396 (16)	0.0450 (16)	0.0014 (12)	0.0146 (13)	0.0027 (13)
C5	0.0364 (17)	0.065 (2)	0.0425 (17)	0.0083 (15)	0.0039 (13)	0.0110 (15)
C6	0.0390 (17)	0.073 (2)	0.0306 (15)	0.0016 (16)	0.0054 (13)	0.0008 (15)
C7	0.0400 (16)	0.0324 (15)	0.0399 (15)	-0.0013 (12)	0.0172 (13)	0.0024 (12)
C8	0.0312 (14)	0.0339 (15)	0.0377 (15)	0.0057 (12)	0.0109 (12)	0.0017 (12)
C9	0.0457 (18)	0.0331 (16)	0.0476 (17)	0.0047 (13)	0.0160 (14)	0.0075 (13)
C10	0.055 (2)	0.057 (2)	0.0378 (17)	0.0142 (16)	0.0116 (15)	0.0143 (15)
C11	0.0438 (17)	0.064 (2)	0.0393 (16)	0.0131 (16)	0.0013 (13)	-0.0034 (16)
C12	0.0351 (16)	0.0453 (18)	0.0565 (19)	-0.0009 (13)	0.0079 (14)	-0.0071 (15)
C13	0.0360 (15)	0.0381 (16)	0.0421 (16)	0.0035 (12)	0.0117 (13)	0.0056 (13)

Geometric parameters (Å, °)

Br1—C4	1.898 (3)	С6—Н6	0.9300
O1—C1	1.348 (3)	С7—С8	1.489 (4)
O1—H1	0.8200	C8—C9	1.388 (4)
O2—C7	1.235 (3)	C8—C13	1.395 (4)
C1—C6	1.382 (4)	C9—C10	1.386 (4)
C1—C2	1.411 (4)	С9—Н9	0.9300
C2—C3	1.400 (4)	C10-C11	1.371 (4)
C2—C7	1.464 (4)	С10—Н10	0.9300
C3—C4	1.370 (4)	C11—C12	1.377 (4)
С3—Н3	0.9300	C11—H11	0.9300
C4—C5	1.391 (4)	C12—C13	1.382 (4)
C5—C6	1.370 (4)	C12—H12	0.9300
С5—Н5	0.9300	С13—Н13	0.9300
C1	109.5	O2—C7—C8	118.0 (2)
O1—C1—C6	118.1 (3)	C2—C7—C8	121.0 (2)
O1—C1—C2	121.8 (3)	C9—C8—C13	119.6 (3)
C6—C1—C2	120.1 (3)	C9—C8—C7	118.6 (2)
C3—C2—C1	118.4 (2)	C13—C8—C7	121.6 (2)
C3—C2—C7	121.4 (2)	C10—C9—C8	120.0 (3)
C1—C2—C7	120.0 (2)	С10—С9—Н9	120.0
C4—C3—C2	120.1 (2)	С8—С9—Н9	120.0
С4—С3—Н3	119.9	C11—C10—C9	120.3 (3)
С2—С3—Н3	119.9	C11-C10-H10	119.9
C3—C4—C5	121.1 (3)	С9—С10—Н10	119.9
C3—C4—Br1	119.5 (2)	C10-C11-C12	120.1 (3)
C5—C4—Br1	119.4 (2)	C10-C11-H11	120.0
C6—C5—C4	119.4 (3)	C12-C11-H11	120.0
С6—С5—Н5	120.3	C11—C12—C13	120.6 (3)
С4—С5—Н5	120.3	C11-C12-H12	119.7
C5—C6—C1	120.8 (3)	C13—C12—H12	119.7
С5—С6—Н6	119.6	C12—C13—C8	119.4 (3)
С1—С6—Н6	119.6	C12—C13—H13	120.3
O2—C7—C2	121.0 (2)	С8—С13—Н13	120.3

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$		
01—H1···02	0.82	1.85	2.569 (3)	146		
C3—H3···O1 ⁱ	0.93	2.60	3.488 (3)	160		
C12—H12···Cg1 ⁱⁱ	0.93	2.93	3.596 (3)	130		
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$; (ii) $-x$, $y-1/2$, $-z+1/2$.						

Fig. 1

